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This work presents a hybrid numerical–analytical solution for transient laminar forced convection over
flat plates of non-negligible thickness, subjected to arbitrary time variations of applied wall heat flux
at the fluid–solid interface. This conjugated conduction–convection problem is first reformulated through
the employment of the coupled integral equations approach (CIEA) to simplify the heat conduction prob-
lem on the plate by averaging the related energy equation in the transversal direction. As a result, an
improved lumped partial differential formulation for the transversally averaged wall temperature is
obtained, while a third kind boundary condition is achieved for the fluid from the heat balance at the
solid–fluid interface. From the available steady velocity distributions, a hybrid numerical–analytical solu-
tion based on the generalized integral transform technique (GITT), under its partial transformation mode,
is then proposed, combined with the method of lines implemented in the Mathematica 5.2 routine
NDSolve. The interface heat flux partitions and heat transfer coefficients are readily determined from
the wall temperature distributions, as well as the temperature values at any desired point within the
fluid. A few test cases for different materials and wall thicknesses are defined to allow for a physical inter-
pretation of the wall participation effect in contrast with the simplified model without conjugation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

New perspectives have been opened by hybrid numerical–ana-
lytical approaches that attempt to incorporate the advantages
associated with the classical analytical approaches, while offering
sufficient flexibility for dealing with more than just model equa-
tions, and aiming at providing a feasible alternative to the purely
discrete approaches in a significant range of applications. One such
hybrid approach is the so-called generalized integral transform
technique (GITT) [1–5], which extends the classical integral trans-
form analytical approach towards the hybrid analysis of linear and
nonlinear diffusion and convection–diffusion problems, and has
been applied to a number of problems in heat and fluid flow. With-
in the context of solving the boundary layer equations with the
GITT, most previous contributions are related to internal flow
problems, but it is worth noting a few previous works concerned
with external flow situations [6–8]. The basic concept is to propose
eigenfunction expansions to the dependent variables based on the
diffusion operator’s behavior, and perform the integral transforma-
tion of the related partial differential equations. One may propose
expansions in all but one independent variable, and then the inte-
gral transformation procedure results in a coupled system of ordin-
ll rights reserved.

. Cotta).
ary differential equations for the transformed potentials, to be, in
general, numerically handled along this single remaining indepen-
dent variable not eliminated through the integration. This is named
the total transformation mode of the GITT approach, and has been
the most frequently adopted along the last few decades. Another
possibility, which has been more intensively employed in recent
years, is the so-called partial transformation mode [1,7–10], in
which not just one independent variable remains, when the user
might choose not to propose the expansion in all spatial variables,
for instance. Then, a coupled system of partial differential equa-
tions results for the transformed potentials, in terms, usually, of
the two independent variables chosen not to be eliminated by inte-
gral transformation. This approach is particularly useful in para-
bolic–hyperbolic formulations, when the diffusion operator might
not be present in one of the spatial variables. Such is the case in
the present class of problems, related to the boundary layer formu-
lation for the energy equation in transient state, when the diffusion
operator in the longitudinal direction is normally disregarded.

Convective heat transfer over surfaces or within channels may
be handled under the boundary layer formulation for a wide range
of practical situations. Such interest has justified the previous ef-
forts towards the hybrid numerical–analytical treatment of heat
and fluid flow boundary layers by integral transforms in light of
the inherent difficulties in obtaining exact analytical solutions
to this class of problems. Of particular interest to the present
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Nomenclature

h(x, t) heat transfer coefficient at interface (W/m2 �C)
kf thermal conductivity (fluid) (W m�1 K�1)
ks thermal conductivity (solid) (W m�1 K�1)
L plate length (m)
Pe Peclet number
Qw dimensionless imposed interface heat flux
ReL Reynolds number
t time variable (s)
T1 free stream temperature (�C)
Tf fluid temperature (�C)
Ts solid temperature (�C)
Tav averaged wall temperature (�C)
u1 free stream velocity (m s�1)
u longitudinal velocity component (m s�1)
U dimensionless longitudinal velocity component
v transversal velocity component (m s�1)
V dimensionless transversal velocity component
x* longitudinal coordinate (m)
x dimensionless longitudinal coordinate

y* transversal coordinate (m)
y dimensionless transversal coordinate

Greek letters
af thermal diffusivity (fluid) (m2 s�1)
as thermal diffusivity (solid) (m2 s�1)
v dimensionless transformed longitudinal coordinate
gt dimensionless transformed transversal coordinate
d*(x*) velocity boundary layer thickness (m)
d(v) dimensionless velocity boundary layer thickness
d�t ðx�; tÞ thermal boundary layer thickness (m)
dt(v) dimensionless thermal boundary layer thickness
hf dimensionless temperature (fluid)
hav dimensionless averaged wall temperature (solid)
m kinematic viscosity (m2 s�1)
s dimensionless time
/(t) imposed interface heat flux (W/m2)
/ref reference heat flux at interface (W/m2)
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contribution is the recent analysis of transient convective heat
transfer over flat plates, handled under the partial integral trans-
formation mode of the GITT approach [8]. From the availability
of the velocity field, the fluid energy equation is integral trans-
formed in the transversal direction, yielding a partial differential
formulation in terms of time and longitudinal coordinate. The
transformed formulation is then numerically handled, as inherent
to this so-called partial transformation mode. Such hybrid solution
was then critically compared against the approximate solution by
the classical integral method for the transient boundary layer
equations [11], which in fact allowed for the benchmarking of
the classical Karman–Pohlhausen approach for the transient
situation.

Conjugated conduction–convection problems are among the
classical formulations in heat transfer that still demand exact ana-
lytical treatment, since the pioneering work of Perelman [12] and
Luikov et al. [13,14], while deserving the attention of various
researchers towards the development of approximate formulations
and/or solutions, either in external or internal flow situations. The
main mathematical difficulties in exactly handling this class of
problems are related with the coupled multiregion spectral analy-
sis required, together with the mixed elliptic (wall) and parabolic
(fluid) natures of the partial differential system. For the situation
of external flow being addressed in the present investigation, a
number of contributions were made available dealing with the
steady-state situation [15–20], including both closed form approx-
imate expressions and numerical solutions of the coupled fluid and
solid energy equations. The present integral transform approach it-
self has been applied to obtain hybrid solutions for conjugated con-
duction–convection problems [21–23], in both steady and periodic
formulations, but only for the internal flow situation, by employing
a transversally lumped heat conduction equation for the wall tem-
perature. Finally, a few recent contributions have addressed the
fully transient external flow situation, offering approximate solu-
tions to both the fluid and solid coupled temperature distributions
[24–27].

The present work brings further contribution to the hybrid
numerical–analytical solution of conjugated conduction–external
convection problems, for either steady or transient formulations.
Incompressible steady laminar flow over a flat plate of non-negli-
gible thickness is thus considered, and the temperature transients
are caused by the time variation of the heat flux applied directly at
the fluid–solid interface. The proposed formulation is motivated by
the flash experimental method for the determination of thermo-
physical properties and/or heat transfer coefficients [28,29], when
the surface of the plate exposed to the flowing fluid is irradiated by
a flash lamp and the heat absorbed by the illuminated wall repre-
sents the imposed interface heat flux. The solution is pursued by
first reformulating the wall heat conduction problem, adopting
an improved lumped model based on the coupled integral equa-
tions approach (CIEA) [2,30–32]. Thus, the transient energy equa-
tion for the solid is integrated in the transversal direction, and
employing Hermite approximations for integrals [2], a more accu-
rate relationship between the interface and the solid average tem-
peratures is established, as compared to the classical lumped
system analysis. As a result, a third type boundary condition for
the fluid temperature problem is reached. The energy equation
for the fluid is then integral transformed, eliminating the transver-
sal direction from the problem formulation, which is later analyti-
cally recovered by the explicit inversion formula. The resulting
coupled partial differential system for the transversally averaged
solid temperature and for the transformed fluid temperatures is
then numerically handled, making use of the Method of Lines
implemented in the function NDSolve of the Mathematica 5.2 soft-
ware system [33].

Numerical results are then obtained for quantities of practical
interest, such as heat transfer coefficients and the heat flux parti-
tion between the fluid and the participating solid. Five cases for
different choices of material and wall thickness were considered
more closely, to illustrate the conjugation effects in comparison
against the base case without wall participation and among
themselves.

2. Problem formulation

The considered problem involves laminar incompressible flow
of a Newtonian fluid over a flat plate, with steady-state flow but
transient convective heat transfer due to a time variable applied
heat flux, /(t), at the solid–fluid interface. The fluid flows with a
free stream velocity u1, which arrives at the plate front edge at
the temperature T1 (Fig. 1). The wall is considered to participate
on the heat transfer problem, with thickness, e, length, L, and re-
lated thermophysical properties. The boundary layer equations
are assumed to be valid for the flow and heat transfer problem
within the fluid, and the conjugated conduction–external convec-
tion problem is written as:



Fig. 1. Description of physical problem and coordinates system for transient
conjugated conduction–external convection for laminar flow over a flat plate.
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Continuity:

ouðx�; y�Þ
ox�

þ ovðx�; y�Þ
oy�

¼ 0; 0 < y� < d�ðx�Þ; 0 < x� < L ð1Þ

Momentum in x-direction:
u
ou
ox�
þ v

ou
oy�
¼ m

o2u
oy�2

; 0 < y� < d�ðx�Þ; 0 < x� < L ð2Þ

Fluid and solid energy equations:

oT f ðx�; y�; tÞ
ot

þ u
oT f ðx�; y�; tÞ

ox�
þ v

oT f ðx�; y�; tÞ
oy�

¼ af
o2T f ðx�; y�; tÞ

oy�2
;

0 < y� < d�t ðx�; tÞ; 0 < x� < L; t > 0 ð3Þ

oTsðx�; y�; tÞ
ot

¼ as
o2Tsðx�; y�; tÞ

ox�2
þ o2Tsðx�; y�; tÞ

oy�2

 !
;

� e < y� < 0; 0 < x� < L; t > 0 ð4Þ

with initial conditions

T f ðx�; y�; 0Þ ¼ T1; 0 < y� <1; 0 < x� < L ð5Þ
Tsðx�; y�; 0Þ ¼ T1; �e < y� < 0; 0 < x� < L ð6Þ

and boundary and interface conditions:

T f ðx�; d�t ; tÞ ¼ T1; 0 < x� < L; t > 0 ð7Þ
T f ðx�;0; tÞ ¼ Tsðx�;0; tÞ; 0 < x� < L; t > 0 ð8Þ

�kf
oT f

oy�

����
y�¼0
¼ �ks

oTs

oy�

����
y�¼0
þ /ðtÞ; 0 < x� < L; t > 0 ð9Þ

�ks
oTs

oy�

����
y�¼�e

¼ 0; 0 < x� < L; t > 0 ð10Þ

T f ð0; y�; tÞ ¼ T1; 0 < y� <1; t > 0 ð11Þ
oTs

ox�

����
x�¼0
¼ oTs

ox�

����
x�¼L

¼ 0; �e < y� < 0; t > 0 ð12Þ

The boundary layer flow problem solution is considered known
at this point, by a chosen approximate analytical or numerical
solution technique, subjected to the usual boundary conditions of
no-slip and impermeability at the wall and free stream conditions
at a distance sufficiently away from the plate [34].

The proposed thermal problem, Eqs. (3)–(12), may be simplified
through the proposition of a lumped formulation for the wall, inte-
grating its temperature field along the transversal direction, y*. Here,
instead of employing the Classical Lumped System Analysis, which
essentially assumes the wall temperature field to be uniform in
the transversal direction, a more refined improved model is pro-
posed. The CIEA [2,30–32] is a very straightforward reformulation
tool employed in the simplification of diffusion or convection–diffu-
sion problems via averaging processes in one or more of the involved
space variables. Simpler formulations of the original partial differ-
ential systems are obtained, through a reduction of the number of
independent variables in multidimensional situations, by integra-
tion (averaging) of the full partial differential equations in one or
more space variables, but retaining some information in the direc-
tion integrated out, provided by the related boundary conditions.
Different levels of approximation in such mixed lumped-differential
formulations can be used, starting from the plain and classical
lumped system analysis, towards improved formulations, obtained
through Hermite-type approximations for integrals [2]. Based on
the values of the integrand and its derivatives at the integration lim-
its, such approximations are given in the form:Z xi

xi�1

yðxÞdx ffi
Xa
m¼0

CmyðmÞi�1 þ
Xb

m¼0

DmyðmÞi ð13Þ

where y(x) and its derivatives y(v)(x) are defined for all x 2 (xi�1,xi).
Furthermore, it is assumed that the numerical values of yðmÞðxi�1Þ �
yðmÞi�1 for m = 0,1,2, . . .,a and yðmÞðxiÞ � yðmÞi for m = 0,1,2, . . .,b, are avail-
able at the end points of the interval. In such a manner, the integral
of y(x) is expressed as a linear combination of y(xi�1), y(xi) and their
derivatives, y(m)(xi�1) up to order m = a, and y(m)(xi) up to order m = b.
The resulting expression for this so-called Ha,b-approximation is
given by:Z xi

xi�1

yðxÞdx¼
Xa

m¼0

Cmða;bÞhmþ1
i yðvÞi�1þ

Xb

m¼0

Cmðb;aÞð�1Þmhmþ1
i yðmÞi þOðhaþbþ3

i Þ

ð14Þ

where,

hi ¼ xi � xi�1; Cmða; bÞ ¼
ðaþ 1Þ!ðaþ bþ 1� mÞ!
ðmþ 1Þ!ða� mÞ!ðaþ bþ 2Þ! ð15Þ

In the present work, we consider just the two approximations,
H0,0 and H1,1, which correspond, respectively, to the well-known
trapezoidal and corrected trapezoidal integration rules, given by:

H0;0 !
Z h

0
yðxÞdx ffi h

2
ðyð0Þ þ yðhÞÞ ð16Þ

H1;1 !
Z h

0
yðxÞdx ffi h

2
ðyð0Þ þ yðhÞÞ þ h2

12
ðy0ð0Þ � y0ðhÞÞ ð17Þ

According to this approach, the transversally averaged wall tem-
perature is to be approximated by a Hermite formula for integrals,
here by taking the H1,1 approximation, the corrected trapezoidal
rule. In addition, the transversally averaged wall heat flux shall be
approximated by the simplest H0,0 approximation, the trapezoidal
rule. This H1,1/H0,0 combined solution does not change the nature
of the problem in comparison with the classical lumped formulation,
but only modifies the equation coefficients. Nevertheless, it has been
shown to be significantly more accurate than the classical lumped
system analysis in the applicable range of the governing parameters
[2]. From the physical point of view, the present approach general-
izes the concept of the lumped system analysis, by accounting for
the contribution of the boundaries temperatures and heat fluxes in
estimating the average temperature and wall heat flux within the
medium (here across the plate thickness only). Thus, the CIEA avoids
the assumption that the average temperature is equal to the bound-
ary value as in the classical lumped approach, which in fact corre-
sponds to a plain rectangle integration formula for the average
temperature approximation, without consideration of the tempera-
ture and heat flux variation across the medium.

The transversally averaged wall temperature, Tav(x*, t), is thus
approximated by the CIEA as:

Tavðx�; tÞ �
1
e

Z 0

�e
Tsðx�; y�; tÞdy

� 1
2

Tsðx�;0; tÞ þ Tsðx�;�e; tÞ½ � � e
12

oTs

oy�

����
y�¼0

ð18Þ
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The average heat flux is approximated as:Z 0

�e

oTsðx�; y�; tÞ
oy�

dy� � Tsðx�;0; tÞ � Tsðx�;�e; tÞ½ � � e
2

oTs

oy�

����
y�¼0

ð19Þ

An expression for the temperature at y* = �e, is then obtained:

Tsðx�;�e; tÞ ¼ 2Tavðx�; tÞ � Tsðx�; 0; tÞ þ
e
6

oTs

oy�

����
y�¼0

ð20Þ

This expression is substituted into the average heat flux expression,
Eq. (19), providing:

Tsðx�;0; tÞ � 2Tavðx�; tÞ � Tsðx�; 0; tÞ þ
e
6

oTs

oy�

����
y�¼0

 !" #
¼ e

2
oTs

oy�

����
y�¼0

ð21Þ

Then, the interface condition, Eq. (8), is recalled, yielding:

oTs

oy�

����
y�¼0
¼ 3

e
½T f ðx�; 0; tÞ � Tavðx�; tÞ� ð22Þ

and the interface condition, Eq. (9), is now reformulated as:

�kf
oT f

oy�

����
y�¼0
¼ /ðtÞ � 3ks

e
½T f ðx�;0; tÞ � Tavðx�; tÞ� ð23Þ

Clearly, according to the above expression, the boundary condi-
tion for the fluid at y* = 0 was reformulated as a third kind bound-
ary condition that includes the participation of the wall through its
averaged temperature. When the interface temperature, Tf(x*,0, t),
and the average solid temperature, Tav(x*, t), have the same value,
the wall does not participate and the conventional second kind
boundary condition for an imposed heat flux is recovered.

The energy equation for the solid is now reformulated by taking
the average on the transversal direction, operating with
1
e

R 0
�e dy�, to yield:

oTavðx�; tÞ
ot

¼ as
o2Tavðx�; tÞ

ox�2
þ as

e

Z 0

�e

o2Tsðx�; y�; tÞ
oy�2

dy�

¼ as
o2Tavðx�; tÞ

ox�2
þ as

e
oTsðx�; y�; tÞ

oy�

����
y�¼0

"

�oTsðx�; y�; tÞ
oy�

����
y�¼�e

#
ð24Þ

We can then eliminate the derivatives at y* = 0 and at y* = �e by
applying the interface conditions, Eqs. (9) and (10):

oTavðx�; tÞ
ot

¼ as
o2Tavðx�; tÞ

ox�2
þ as

eks
kf

oT f ðx�; y�; tÞ
oy�

����
y�¼0
þ /ðtÞ

" #
ð25Þ

or, by recalling the reformulated fluid boundary condition:

oTavðx�; tÞ
ot

¼ as
o2Tavðx�; tÞ

ox�2
� 3as

e2 Tavðx�; tÞ � T f ðx�;0; tÞ½ � ð26Þ

This lumped-differential equation is complemented by the also
averaged initial and boundary conditions:

Tavðx�;0Þ ¼ T1 ð27Þ
oTavðx�; tÞ

ox�

����
x�¼0
¼ 0;

oTavðx�; tÞ
ox�

����
x�¼L

¼ 0 ð28Þ

Again, the difference between the average solid temperature
and the fluid interface temperature is responsible for the coupling
of the two processes along the longitudinal coordinate, x*.

Higher order formulations could be achieved but then the nat-
ure of the formulation would somehow change. For instance, by
introducing the H1,1 approximation also for the average heat flux,
the formulation would then incorporate a partial differential equa-
tion for the temperature at y* = �e, which is not entirely elimi-
nated, coupled to the average wall and interface temperatures.
We have here preferred to obtain a simpler formulation for the
conjugated problem as above described. The conjugated conduc-
tion–convection problem can also be rewritten after introducing
the following dimensionless variables:

U ¼ u
u1

; V ¼ v
u1

; x ¼ x�

L
; y ¼ y�

L
; s ¼ u1 � t

L
;

h ¼ T � T1
/ref �L

kf

; ReL ¼
u1 � L

m
; Pef ¼

u1 � L
af

;

Pes ¼
u1 � e
as

; d ¼ d�

L
; dt ¼

d�t
L
; Q w ¼

/
/ref

;

R ¼ e
L
; K ¼ kf

ks
ð29Þ

and the governing dimensionless equations for the flow problem
are given by:

oUðx; yÞ
ox

þ oVðx; yÞ
oy

¼ 0; 0 < y < dðxÞ; 0 < x < 1 ð30Þ

U
oU
ox
þ V

oU
oy
¼ 1

ReL

o2U
oy2 ; 0 < y < dðxÞ; 0 < x < 1 ð31Þ

The thermal problem is essentially confined to a region here
represented by the time-independent thickness dt(x), which just
needs to be large enough to encompass the actual thermally af-
fected region throughout the transient process. In applying the
integral transform approach [1–5], we are by no means con-
strained to finding a transient thermal boundary layer thickness
and the formulation is essentially treated as that for a semi-infinite
region. However, it is of interest to avoid the proposition of eigen-
function expansions with variable eigenvalues along the longitudi-
nal coordinate. Therefore, we introduce a domain regularization
transformation for the spatial domain written as:

gt ¼
y

dtðxÞ
and v ¼ x ð32Þ

Then, the dimensionless form for the fluid energy equation after the
domain transformation is given by:

d2
t ðvÞ

ohf ðv;gt;sÞ
os

þU�
ohfðv;gt;sÞ

ov þV�
ohf ðv;gt;sÞ

ogt
¼ 1

Pef

o2hfðv;gt;sÞ
og2

t
;

0<gt <1; 0<v<1; s>0 ð33Þ

where

U�ðv;gtÞ ¼ Uðv;gtÞd
2
t ðvÞ and

V�ðv;gtÞ ¼ gtUðv;gtÞdtðvÞ
ddtðvÞ

dv þ Vðv;gtÞdtðvÞ ð34Þ

The initial and boundary conditions become:

hf ðv;gt;0Þ ¼ 0; 0 < gt < 1; 0 < v < 1 ð35Þ
hf ð0;gt; sÞ ¼ 0; 0 < gt < 1; s > 0 ð36Þ
hf ðv;1; sÞ ¼ 0; 0 < v < 1; s > 0 ð37Þ
ohf

ogt

����
gt¼0
¼ 3dtðvÞ

K � R ½hfðv; 0; sÞ � havðv; sÞ� � dtðvÞQ wðsÞ;

0 < v < 1; s > 0 ð38Þ

And the wall energy equation with the respective initial and bound-
ary conditions are given by:

ohavðv; sÞ
os

¼ R
Pes

o2havðv; sÞ
ov2

þ 3
Pes � R

½hfðv; 0; sÞ � havðv; sÞ�; 0 < v < 1; s > 0

ð39Þ
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havðv;0Þ ¼ 0; 0 < v < 1 ð40Þ
ohav

ov

����
v¼0
¼ ohav

ov

����
v¼1
¼ 0; s > 0 ð41Þ
3. Solution methodology

The flow problem is readily solved according to Blasius similar-
ity transformation [34], which provides the velocity components to
feed into the decoupled transient energy equation. For the thermal
problem solution, since there is a preferential convective direction
aligned with the flow, the integral transformation was chosen to be
operated solely in the transversal direction, along which diffusion
predominates. However, Eqs. (5)–(9) are still not in the most con-
venient form for integral transformation, since the boundary con-
dition at the wall involves a non-homogeneous term at gt = 0,
which might be responsible for a slow convergence behavior of
the eigenfunction expansion, especially in the vicinity of this
boundary source term. A filtering solution is then proposed, so as
to eliminate the non-homogeneous boundary condition, in the
form:

hf ðv;gt; sÞ ¼ h�f ðv;gt; sÞ þ Fðgt; v; sÞ ð42Þ

Here, a straightforward second-degree polynomial filter is pro-
posed, F(gt;v,s), where v and s are just parameters of the solution.
The filter is obtained from satisfaction of the three essential bound-
ary conditions at the transversal domain edges:

Fðgt;v; sÞ ¼ e0ðv; sÞ þ e1ðv; sÞgt þ e2ðv; sÞg2
t ;

0 < v < 1; 0 < gt < 1; s > 0

Fð1;v; sÞ ¼ 0
dF
dgt

����
gt¼1
¼ 0

dF
dgt

����
gt¼0
¼ 3dtðvÞ

1
KR
½Fð0;v; sÞ � havðv; sÞ� � dtðvÞQ wðsÞ

ð43Þ

Thus, applying the proposed filtering solution to Eq. (33), the
resulting filtered problem is given by:

d2
t ðvÞ

oh�f ðv;gt; sÞ
os

þ U�
oh�f ðv;gt; sÞ

ov þ V�
oh�f ðv;gt; sÞ

ogt

¼ 1
Pef

o2h�f ðv;gt; sÞ
og2

t
þ Gðv;gt; sÞ;

0 < gt < 1; 0 < v < 1; s > 0 ð44Þ

where

Gðv;gt; sÞ ¼ � d2
t ðvÞ

oFðgt; v; sÞ
os

� U�
oFðgt;v; sÞ

ov � V�
oFðgt;v; sÞ

ogt

þ 1
Pef

o2Fðgt; v; sÞ
og2

t
ð45Þ

with initial and boundary conditions:

h�f ðv;gt;0Þ ¼ �Fðgt;v;0Þ; 0 < v < 1; 0 < gt < 1 ð46Þ
h�f ð0;gt; sÞ ¼ �Fðgt; 0; sÞ; 0 < gt < 1; s > 0 ð47Þ
oh�f
ogt

����
gt¼0
¼ 3dtðvÞ

KR
h�f ðv; 0; sÞ; and h�f ðv;1; sÞ ¼ 0;

0 < v < 1; s > 0 ð48Þ

The wall energy equation and the respective conditions are:

ohavðv; sÞ
os

¼ R
Pes

o2havðv; sÞ
ov2 þ 3

PesR
h�f ðv; 0; sÞ � havðv; sÞ
� �

þ 3
PesR

Fð0;v; sÞ; 0 < v < 1; s > 0 ð49Þ
havðv;0Þ ¼ 0; 0 < v < 1 ð50Þ
ohav

ov

����
v¼0
¼ ohav

ov

����
v¼1
¼ 0; s > 0 ð51Þ

Proceeding with application of the GITT [1–5], the proposed auxil-
iary eigenvalue problem is written as:

d2wðgtÞ
dg2

t
þ l2wðgtÞ ¼ 0; 0 < gt < 1

dw
dgt

����
gt¼0
¼ 0 wð1Þ ¼ 0

ð52Þ

which is readily solved to yield eigenfunctions, eigenvalues and
norms, respectively, as:

wiðgtÞ ¼ cos½gtli�; 0 < gt < 1; i ¼ 1;2; . . . ð53Þ

li ¼
ð2i� 1Þp

2
; i ¼ 1;2; . . . ;

Ni ¼
Z 1

0
wiðgtÞwiðgtÞdgt ¼ 1=2 ð54Þ

The normalized eigenfunction is given by:

~wiðgtÞ ¼
wiðgtÞ
N1=2

i

¼
ffiffiffi
2
p

cos½gtli�; 0 < gt < 1; i ¼ 1;2; . . . ð55Þ

The eigenvalue problem (52) allows definition of the following
transform-inverse pair:

�h�f ;jðv; sÞ ¼
Z 1

0

~wjðgtÞh
�
f ðv;gt; sÞdgt ! Transform ð56Þ

h�f ðv;gt; sÞ ¼
X1
j¼1

~wjðgtÞ�h�f;jðv; sÞ ! Inverse ð57Þ

Applying the operator
R 1

0
~wiðgtÞ dgt over Eqs. (44), (46) and

(47), followed by the inverse formula, then results:

d2
t ðvÞ

o�h�f ;iðv; sÞ
os

þ
X1
j¼1

aijðvÞ
o�h�f ;jðv; sÞ

ov þ bijðvÞ�h�f;jðv; sÞ
" #

¼ �giðv; sÞ; 0 < v < 1; s > 0; i ¼ 1;2; . . . ð58Þ

with

�h�f ;iðv;0Þ ¼ �
Z 1

0

~wiðgtÞFðgt; v;0Þdgt and

�h�f ;ið0; sÞ ¼ �
Z 1

0

~wiðgtÞFðgt; 0; sÞdgt ð59Þ

aijðvÞ ¼
Z 1

0
U�ðv;gtÞ~wiðgtÞ~wjðgtÞdgt

¼ d2
t ðvÞ

Z 1

0
UðgtÞ~wiðgtÞ~wjðgtÞdgt ð60Þ

and

bijðvÞ ¼
6dtðvÞ

RK
þ 1

Pef
l2

j dij þ
Z 1

0
V�ðv;gtÞ~wiðgtÞ

d~wjðgtÞ
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Z 1

0
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2
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dgt

�
Z 1
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� oFðgt;v; sÞ

ov dgt

�
Z 1

0

~wiðgtÞV
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ogt
dgt

þ
Z 1

0

~wiðgtÞ
1

Pef

o2Fðgt;v; sÞ
og2

t
dgt

ð61Þ
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The wall heat transfer problem can then be described by a partial
differential equation coupled to the transformed fluid temperature
fields:

ohavðv; sÞ
os

¼ R
Pes

o2havðv; sÞ
ov2 þ 3

PesR

X1
j¼1

~wjð0Þ�h�f ;jðv; sÞ
h i

� havðv; sÞ
" #

þ 3
PesR

Fð0;v; sÞ; 0 < v < 1; s > 0 ð62Þ

havðv;0Þ ¼ 0; 0 < v < 1 ð63Þ
ohav

ov

����
v¼0
¼ ohav

ov

����
v¼1
¼ 0; s > 0 ð64Þ

Eqs. (58)–(64) form an infinite coupled system of one-dimen-
sional partial differential equations for the fluid transformed
potentials and the average wall temperature. For computational
purposes this system is truncated to a sufficiently large finite order,
N, for the required convergence control. Once the transformed
potentials are numerically computed, the inversion formula,
Eq. (57), is employed to reconstruct the filtered potentials,
h�f ðv;gt; sÞ, in explicit form in the transversal coordinate, and after
adding the filtering solution, F(gt;v,s), the dimensionless temper-
ature distribution, hf(v,gt,s), is recovered everywhere within the
boundary layer and along the transient process. Eqs. (58)–(64) in
truncated form are then numerically handled by routine NDSolve
of the Mathematica v.5.2 system [33].

The interface condition after the filtering process, Eq. (48), re-
sults in a third type boundary condition with variable coefficient.
Its incorporation in the adopted eigenvalue problem would pro-
duce v-dependent eigenvalues, eigenfunctions and associated
quantities, considerably increasing the analysis effort and com-
putational cost at this phase. For this reason it was preferred
to consider a simpler auxiliary problem, similar to the one em-
ployed for the case without wall conjugation [8], which avoids
the longitudinal coordinate dependence and exactly recovers
the second type boundary condition of an imposed wall heat
flux.

Due to this choice of a simpler expansion basis, with less infor-
mation of the original problem, a slower convergence rate of the
eigenfunction expansion in the vicinity of the boundary might re-
sult. A convergence acceleration technique which is quite adequate
to such situations is the so-called Integral Balance approach [1,2],
which essentially provides an a posteriori convergence enhance-
ment by finding a new inversion formula from the integration of
the original partial differential formulation, and substituting the
available boundary conditions and the originally proposed inver-
sion formula itself. This technique is based on the concept that
the integrals of eigenfunction expansions provide a more favorable
convergence behavior than that of the potential expansion itself.
Basically, this procedure explicitly incorporates the contribution
of the equation and boundary source terms into the improved
inversion formula.

The integral balance approach is thus applied by integrating Eq.
(44) with

R 1
0 dgt , which yields:

Z 1

0
d2

t ðvÞ
oh�f ðv;gt; sÞ

os
þ U�

oh�f ðv;gt; sÞ
ov þ V�

oh�f ðv;gt; sÞ
ogt

� �
dgt

¼
Z 1

0

1
Pef

o2h�f ðv;gt; sÞ
og2

t
þ Gðv;gt; sÞ

" #
dgt;

0 < gt < 1; 0 < v < 1; s > 0 ð65Þ

Making use of the boundary condition at the edge of the boundary

layer, oh�f
ogt

���
gt¼1

¼ 0, the right-hand side (RHS) of the above expression

is given by:
RHS ¼
Z 1

0
Gðv;gt; sÞdgt �

1
Pef

ohf

ogt

����
gt¼0

ð66Þ

Applying the original inversion formula given by Eq. (57), to the
left-hand side (LRS) of Eq. (65), we find:

LHS ¼
Z 1

0
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þ
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ð67Þ

Making RHS = LHS, a new expression for the fluid temperature
derivative at the interface gt = 0 is achieved as:

oh�f
ogt

����
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¼ Pef

Z 1

0
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dgt

 !
�h�f ;jðv; sÞ ð68Þ

On the other hand, the solid–fluid interface temperature is also
re-evaluated, making use of the above expression and of the inter-
face condition of Eq. (48), to yield the alternative inversion formula
below:

h�f ðv;0; sÞ ¼
KR

3dtðvÞ
Pef

Z 1

0
Gðv;gt; sÞdgt

� KR
3dtðvÞ

Pef

X1
j¼1

d2
t ðvÞ

Z 1

0

~wjðgtÞdgt

� 	
o�h�f ;j
os

� KR
3dtðvÞ

Pef

X1
j¼1

Z 1

0
U�ðv;gtÞ~wjðgtÞdgt

� 	
o�h�f ;j
ov

� KR
3dtðvÞ

Pef

X1
j¼1

Z 1

0
V�ðv;gtÞ

o~wj

ogt
dgt

 !
�h�f ;jðv; sÞ ð69Þ

The above expressions are expected to provide a sensible
improvement on convergence rates with respect to the formal
inversion formula previously presented.

4. Results and discussion

The developed Mathematica code [33] incorporates all the sym-
bolic and numerical computational steps in the solution procedure.
This notebook was validated in several ways, including compari-
sons with the Blasius solution for the thermal boundary layer for
steady state and without wall conjugation [34], and against the
transient solution with the Karman–Pohlhausen integral method
approximation [26]. The improved lumped formulation was also
validated and inspected by solving the two-dimensional heat con-
duction equation at the wall, employing the here obtained inter-
face temperature as a boundary condition. More details on this
validation effort can be found in Ref. [27]. Here, we first report part
of the numerical analysis performed to inspect the local error



Table 3
Convergence behavior of the interface temperature expansion for different truncation
orders, according to the integral balance expression, Eq. (69), at t = 0.2 and 2.0 s

GITT + integral balance

t = 0.2 s t = 2.0 s

Number
of terms

Interface temperature (�C) Number
of terms

Interface temperature (�C)

x = L/10 x = L/2 x = L x = L/10 x = L/2 x = L

1 22.5450 23.7543 24.0676 1 23.8715 28.6060 31.5838
2 22.6227 23.7818 24.0905 2 24.0351 28.7891 31.7553
3 22.6016 23.7642 24.0696 3 23.9839 28.7394 31.7803
4 22.6028 23.7704 24.0794 4 23.9931 28.7450 31.7329
5 22.6008 23.7668 24.0753 5 23.9875 28.7404 31.7508
6 22.6012 23.7687 24.0777 6 23.9894 28.7416 31.7374
7 22.6006 23.7675 24.0764 7 23.9878 28.7403 31.7436
8 22.6008 23.7683 24.0773 8 23.9885 28.7408 31.7388
9 22.6006 23.7677 24.0767 9 23.9879 28.7403 31.7415

10 22.6006 23.7681 24.0771 10 23.9882 28.7405 31.7393
11 22.6005 23.7678 24.0768 11 23.9879 28.7403 31.7406
12 22.6006 23.7681 24.0771 12 23.9881 28.7404 31.7395
13 22.6005 23.7679 24.0769 13 23.9879 28.7403 31.7402
14 22.6006 23.7680 24.0770 14 23.9880 28.7403 31.7395
15 22.6005 23.7679 24.0769 15 23.9879 28.7403 31.7400
16 22.6005 23.7680 24.0770 16 23.9880 28.7403 31.7396
17 22.6005 23.7679 24.0769 17 23.9879 28.7402 31.7399
18 22.6005 23.7680 24.0770 18 23.9880 28.7403 31.7396
19 22.6005 23.7679 24.0770 19 23.9879 28.7402 31.7399
20 22.6005 23.7680 24.0770 20 23.9879 28.7403 31.7396
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control of the NDSolve routine [33] in the numerical solution of the
coupled partial differential system, and the global error control
through the convergence of the eigenfunction expansions, as rec-
ommended in the proposed hybrid numerical–analytical solution.
Then, we proceed towards the physical interpretation of the conju-
gation effect along the transient behavior. On the basis of the flash
experiment motivation [25,26], five test cases with wall conjuga-
tion were considered, for three different materials (Norcoat, PVC
and aluminum) and respective plate thicknesses, as detailed in Ta-
ble 1. The base case (case 0) is related to the situation without wall
conjugation, already treated in Ref. [8] by the same hybrid
approach.

Air was always the cooling fluid and the adopted numerical val-
ues in the simulations for the related governing parameters were:

L ¼ 0:1 m; u1 ¼ 1 m=s; T1 ¼ 20 
C;

af ¼ 2:22	 10�5 m2=s; kf ¼ 0:0262 W=ðm 
CÞ;
m ¼ 1:57	 10�5 m2=s; /ref ¼ 100 W=m2

In the numerical analysis of the code we have mostly employed
case no. 2, for a Norcoat wall of 7 mm thickness, and for a time step
with a uniform heat flux incidence at the fluid–solid interface, /
(t) = /ref, Qw(t) = 1. Table 2 illustrates the numerical behavior of
the interface temperature for case 2, at different time values and
for the longitudinal positions x* = 0.01 and 0.1 m, by varying the
parameter MaxStepSize of routine NDSolve [33], which controls
the maximum allowable step size in the discretization procedure
of the Method of Lines. Clearly, the default operation mode in this
built in routine cannot provide an uniform error control over the
whole solution domain. However, the user might directly control
the computations by varying this parameter and inspecting the rel-
ative errors achieved. For instance, at least four digits precision is
reached within the range of MaxStepSize here investigated for both
the spatial and time variables (Dx = 0.002 and Dt = 0.025).

Next, we demonstrate the convergence rates achievable by the
chosen eigenfunction expansion in combination with the proposed
integral balance approach. A brief convergence analysis for case 2
is illustrated in Table 3, by varying the truncation order in the ser-
ies representation for the temperature field at the interface. Table 3
illustrates, for two values of the time variable, t = 0.2 s and t = 2 s,
Table 1
Test cases and governing parameters

Case Material e (m) ks (W/m �C) (qcp)s (J/m3 �C) as (m2/s)

0 No conjugation – – –
1 Norcoat 0.002 0.12 718.6 1.67 	 10�4

2 Norcoat 0.007 0.12 718.6 1.67 	 10�4

3 Norcoat 0.012 0.12 718.6 1.67 	 10�4

4 PVC 0.012 0.15 1.36 	 10+6 0.11 	 10�6

5 Aluminum 0.012 238 2.55 	 10+6 9.33 	 10�5

Table 2
Numerical behavior of the interface temperature for different values of the error control p

Interface temperature (�C): x = 0.01 m

t (s) MaxStepSize

Default x: 0.002 x: 0.002 x: 0.002
t: 0.1 t: 0.05 t: 0.025

0.02 21.4953 21.4956 21.4956 21.4958
0.04 21.6597 21.6571 21.6581 21.6591
0.06 21.8133 21.8065 21.8087 21.8103
0.08 21.9569 21.9452 21.9485 21.9505
0.1 22.0911 22.0742 22.0783 22.0807
0.2 22.6437 22.6018 22.6068 22.6097
0.3 23.0432 22.9822 22.9856 22.9876
the interface temperature convergence, according to Eq. (69), for
three different positions along the plate.

Clearly, full convergence to six significant digits is achieved in
all cases, with truncation orders less than N = 20. Also, with much
lower truncation orders, N < 10, an impressive convergence to ±1 in
the fourth significant digit is obtainable throughout the considered
range of the independent variables.

The physical conjugated problem is now analyzed by consider-
ing all six cases described in Table 1, including the situation with-
out wall conjugation (case 0) as a reference state. Fig. 2a–f thus
presents the time evolution of the fluid–solid interface tempera-
tures at different longitudinal positions, x = 0.01, 0.025, 0.05,
0.075, and 0.1 m, within appropriate ranges for the time variable
for each case. The arrows indicate the sense of increasing longitu-
dinal positions for the various curves shown. In fact, the first obser-
vation comes from the dramatically different time ranges achieved
in each of the cases analyzed. The transient convection problem
without wall conjugation already reaches steady state for all of
the plate length within a fraction of a second, while the two last
cases (Fig. 2e and f) of materials with large thermal capacities,
and larger thicknesses, require a few hours for reaching a steady
situation. For the same material (Norcoat) and increasing wall
thicknesses (Fig. 2b–d), the longer transient is also observable,
though still within the range of a few seconds, due to low thermal
arameter (MaxStepSize) in the routine NDSolve [33]

Interface temperature (�C): x = 0.1 m

t (s) MaxStepSize

Default x: 0.002 x: 0.002 x: 0.002
t: 0.1 t: 0.05 t: 0.025

0.02 21.9869 21.9872 21.9872 21.9873
0.04 22.2751 22.2740 22.2747 22.2753
0.06 22.5556 22.5529 22.5545 22.5555
0.08 22.8284 22.8242 22.8267 22.8282
0.1 23.0939 23.0882 23.0915 23.0934
0.2 24.3173 24.3074 24.3128 24.3159
0.3 25.3834 25.3747 25.3793 25.3820



Fig. 2. Transient behavior of interface temperatures at selected longitudinal positions and for different wall materials and thicknesses. (a) Case 0: without conjugation;
(b) case 1: Norcoat 2 mm; (c) case 2: Norcoat 7 mm; (d) case 3: Norcoat 12 mm; (e) case 4: PVC 12 mm; and (f) case 5: aluminum 12 mm.
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capacitance of this material. In addition, it is clear that the steady
state is achieved earlier for those positions closer to the leading
edge of the plate in all cases, though this is not so evident in the
aluminum case (Fig. 2f) when the interface temperature distribu-
tion is practically spatially uniform, in light of the high thermal
conductivity and effective heat diffusion along the plate length.
Superposition of any of the cases with wall conjugation over the
base case of no wall participation, clearly confirm the non-negligi-
ble effect in the transient and spatial behavior of the interface
temperatures.

One important aspect in this situation of an applied known heat
flux at the solid–fluid interface, is to quantify the heat flux parti-
tion between the solid and the fluid along the plate length and
with time, which is indeed quite different from the behavior in
the more usual situation of an imposed heat flux at the wall face
not in contact with the exchanging fluid. Fig. 3a–f thus presents
the heat fluxes to the solid (solid lines, lower curves in each graph)
and to the fluid (dashed lines, upper curves) in each case, plotted
against the longitudinal coordinate and for different values of the
time variable as pointed out above the graph, starting from the
base case when all the imposed heat is directly delivered to
the fluid at each position (/ = 100 W/m2). The arrows indicate
the sense of increasing time variable value for the various curves
shown. It is first evident from all of the graphs presented, that
the employed boundary layer formulation leads to the expected
singularity at the leading edge, where the heat transfer coefficient
becomes infinite. One may see that along the time variable the heat
flux to the fluid is increasing, while to the solid it should be
decreasing, in light of the smoother temperature gradients across
the wall. Along the plate length, the heat flux to the fluid decreases,
following the heat transfer coefficient behavior, which is very high
close to the plate edge singularity. One may also observe, more
clearly from the last two cases, Fig. 3e and f, that it might exist a
turning point along the plate length, when the heat flux to the solid
switches sense, closer to the plate leading edge and increasing its
position along the transient process. Thus, for positions further
away from the leading edge, the imposed heat flux is partitioned
between the fluid and the solid, while for positions closer to the
plate leading edge some additional heat from the solid may be re-
moved by the fluid, as illustrated in Fig. 4, with the net heat flow
along the plate length in the negative x sense. In all cases shown
here we have verified that the summation of the two heat fluxes
at each position, equals the applied flux at the interface. In the last
two cases, Fig. 3e and f, one may observe that the two heat fluxes



Fig. 3. Longitudinal variation of partitioned heat fluxes to the solid and to the fluid along the interface at selected values of time and for different wall materials and
thicknesses (dashed lines, heat flux to the fluid; solid lines, heat flux to the solid). (a) Case 0: without conjugation; (b) case 1: Norcoat 2 mm; (c) case 2: Norcoat 7 mm;
(d) case 3: Norcoat 12 mm; (e) case 4: PVC 12 mm; and (f) case 5: aluminum 12 mm.

Fig. 4. Illustration of the heat flux partition and the wall conjugation effect.
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cross at a certain longitudinal position, after which the wall starts
retrieving more energy than the fluid from the incident heat flux at
that particular position. As the steady state is approached the inte-
gral of the wall heat flux along the longitudinal coordinate tends to
zero, since all the other boundaries are insulated and the internal
energy within the solid ceases changing with time, while the inte-
gral of the fluid heat flux over the plate surface recovers, in full, the
total delivered heat transfer rate. We may again observe the typi-
cally slower transients, from these two situations, cases 4 and 5,
due to the much higher thermal capacitance in comparison to
the Norcoat wall, cases 1–3, as demonstrated by the heat flux par-
tition evolutions presented in Fig. 3.

Fig. 5a–f illustrates the transient behavior of the local heat
transfer coefficients for each of the six cases, for the same selected
longitudinal positions as in Fig. 2. The arrows indicate the sense of
increasing longitudinal positions for the various curves shown. It is
clear, in all cases, that steady-state values for the heat transfer
coefficients are reached much before than for either the interface
temperatures or heat fluxes. Such behavior permits the construc-
tion of approximate transient solutions based on constant heat
transfer coefficient values along the transients, but one should be
careful in adopting the appropriate correlations for the Nusselt
number, since wall conjugation markedly affects the spatial varia-
tion of the heat transfer coefficients, as observable from Fig. 5. For
instance, the heat transfer coefficient for case 5, the aluminum
wall, is more closely approximated by the situation of a prescribed
uniform wall temperature, while case 2 for the thinner Norcoat
wall is more appropriately approximated by an imposed uniform
wall heat flux. This aspect is more clearly illustrated in Fig. 6,
which presents the steady-state longitudinal distribution of the



Fig. 5. Transient behavior of local heat transfer coefficients at selected longitudinal positions and for different wall materials and thicknesses. (a) Case 0: without conjugation;
(b) case 1: Norcoat 2 mm; (c) case 2: Norcoat 7 mm; (d) case 3: Norcoat 12 mm; (e) case 4: PVC 12 mm; and (f) case 5: aluminum 12 mm.

Fig. 6. Steady-state behavior of local heat transfer coefficients along the longitu-
dinal coordinate for different wall materials and same thickness (12 mm), cases
3–5, as compared to theoretical correlations without conjugation for prescribed
wall temperature (lower solid line) and prescribed wall heat flux (upper line).
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local heat transfer coefficient, as obtained for the three materials
here considered, Norcoat, PVC and aluminum, for the same wall
thickness of 12 mm (cases 3, 4 and 5). Case 3 is shown in short
dashed line, case 4 in long dashed line, while case 5 is in dot-
dashed line. In addition, the results from the classical theoretical
correlations for both the prescribed temperature and prescribed
heat flux boundary conditions, without wall conjugation, are pre-
sented in solid lines (lower curve is for the first kind condition).
As we can see, the Norcoat results (case 3) are the ones closer to
the prescribed heat flux behavior, followed by the PVC wall (case
4), while the aluminum case (case 5) is indeed much closer to a
prescribed wall temperature physical problem.

Fig. 7 illustrates the transient behavior of both the wall temper-
ature (Fig. 7a) and the local heat transfer coefficient (Fig. 7b), for
the three different thicknesses of Norcoat (cases 1–3), at the posi-
tion x = 0.1 (end of the plate). Clearly, the wall temperatures expe-
rience a much longer transient behavior, as observed above,
changing along approximately 6 s, while the heat transfer coeffi-
cient ceases to change at less than 0.5 s. It should be noted that
the time scales of the two graphs are actually different for clarity
in Fig. 7a and b. Also, significant differences in the wall tempera-



Fig. 7. Comparison of the transient behavior of the interface temperature and local heat transfer coefficients for different wall thicknesses of Norcoat, case 1 (2 mm): solid
lines; case 2 (7 mm): dashed lines; case 3 (12 mm): dot-dashed lines. (a) Interface temperatures at the end of the plate. (b) Local heat transfer coefficient at the end of the
plate.
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ture behavior due to the varying thickness are observable essen-
tially along the transient period, in light of the relevant thermal
capacitance difference, while the steady values for both the wall
temperature and heat transfer coefficients are not markedly apart
for the three wall thicknesses.

5. Conclusions

The present work was concerned with the solution and physical
interpretation of a transient conjugated conduction–external con-
vection problem, for laminar flow over a flat plate of non-negligible
thickness, with heat flux being delivered at the fluid–wall inter-
face. The wall heat conduction problem was first simplified, by
making use of the coupled integral equations approach to find an
improved lumped-differential formulation for the transversally
averaged wall temperature, as a function of the time variable and
of the longitudinal coordinate. Then, the GITT was applied to the
resulting formulation in its partial transformation mode, i.e., by
removing only the transversal coordinate through the integral
transformation of the fluid energy equation. A system of partial dif-
ferential equations is thus obtained, coupling the transformed fluid
temperatures and average wall temperature, which is then numer-
ically solved by the Method of Lines implemented in the Mathem-
atica package. All of the analytical steps in the methodology
derivation were also incorporated into the developed mixed sym-
bolic–numerical computer code.

The proposed combination of problem reformulation and hybrid
solution methodology were demonstrated to be accurate and robust
from the numerical point of view. It was also pointed out that care
must be exercised when employing the Method of Lines routine in
its automatic error control mode, since numerical loss of accuracy
and oscillations were observed for short times and longitudinal posi-
tions very close to the plate edge singularity. Numerical results for
interface temperature, heat transfer coefficient and heat flux parti-
tion are reported for six different physical situations of wall partici-
pation, illustrating the importance of considering this phenomena in
most cases. The developed approach is also fairly flexible so as to
accommodate any form of the imposed interface heat flux variation
in both position and time, and should be extendable to various other
physical situations, as motivated by future applications.
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